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Critical jets in surface waves and
collapsing cavities

B y Michael S. Longuet-Higgins1 and Hasan N. Og̃u z2

1Institute for Nonlinear Science, University of California San Diego,
La Jolla, CA 92093-0402, USA

2Department of Mechanical Engineering, The Johns Hopkins University,
Baltimore, MD 21218, USA

In certain types of collapsing cavities, a highly accelerated inward jet can occur.
In other cases, starting from slightly different initial conditions, there is no jet but
instead a small bubble is pinched off from the main cavity. At critical values of the
initial parameters, separating inward jet formation from bubble pinch-off, the local
flow has been found to be self-similar; the axial acceleration increases like (t1− t)−α,
where t1 is a critical value of the time t and α is a positive constant. In this paper
we report calculated values of α for three different classes of initial flows, namely
(1) a moving sink in an infinite fluid, (2) a bubble collapsing near a plane wall and
(3) a slightly deformed bubble in an infinite fluid, with gravity. These flows are all
axisymmetric. The two-dimensional jets arising from the impact of surface waves on
a plane wall are also discussed and modelled.

1. Introduction

A vertical jet of water is commonly thrown upwards by the collapse of the cavity in a
bubble bursting at the sea surface (Blanchard & Woodcock 1980) and sometimes by
the collapse of cavities caused by falling drops of rain (Og̃uz & Prosperetti 1990). On
a larger scale, a controlled upward jet can be produced by the collapse of the bowl in
an axisymmetric standing wave, excited subharmonically (see Longuet-Higgins 1983).
Thus in a laboratory experiment with a circular cylinder of radius 8.2 cm, upward
velocities exceeding 8 m s−1 were measured, with accelerations exceeding 15g.

Similar jets are often observed when a two-dimensional wave approaches a ver-
tical sea-wall, or a ship’s hull. Whereas at low wave amplitudes the free surface
remains horizontal and the wave is reflected smoothly, and at high wave amplitudes
the surface overturns and traps a volume of air, at some intermediate or critical
wave amplitude a jet of water can be thrown violently upwards. In the numerical
experiments of Cooker & Peregrine (1991), for example, the upwards acceleration of
the jet sometimes exceeded 1850g.

A similar phenomenon is found in collapsing underwater cavities. It is well known
that during the axisymmetric collapse of a bubble or cavity near a solid or a free
surface, a strong inward jet usually occurs (Plesset & Chapman 1971). There are,
however, some cases, as we shall show, where instead of the smooth formation of a
jet, the free surface pinches off a small subsidiary cavity. If the initial flow conditions
are allowed to vary continuously, there is a critical value of the parameter at which
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Figure 1. Coordinates (r, θ) for a moving sink S.

bubble ‘pinch-off’ first occurs. A particular example, when the initial flow is described
by a moving point-sink within the cavity, has been analysed by Longuet-Higgins &
Og̃uz (1995). The initial flows were described by two independent parameters C
and D (see §3). Some attention was paid to the typical case D = 1, which became
critical when C ' 0.4. Close to the critical value of C the form of the jet and the
corresponding flow were examined and found to be closely self-similar, with the local
scale of the jet being proportional to (t1−t)β(β ' 0.575). Thus the particle velocities
and accelerations varied as (t1−t)β−1 and (t1−t)β−2, respectively, t1 being the critical
time t. Hence the velocities and accelerations became indefinitely large as t→ t1 (the
fluid was assumed incompressible).

In the example just given the flow was unbounded and there was no external
pressure field applied at infinity. Moreover, only the case D = 1 was considered.
In the present paper we shall extend these results in three ways: first, by consid-
ering other moving-sink flows, with D 6= 1; second by considering the collapse of a
slightly asymmetric bubble under gravity, and with a constant applied pressure at
infinity; third by considering an asymmetric bubble situated close to a solid wall,
with no gravity. These cases are treated in §2, 3 and 4, respectively. In each case we
find critical values of the parameter, separating jet formation and bubble pinch-off,
with corresponding velocity fields that are locally self-similar, and we determine the
corresponding values of the exponent β. The results are summarized in §5.

Finally in §6 we analyse the analogous phenomenon in two-dimensional surface
waves. The critical jet, or ‘flip through’, of Cooker & Peregrine (1990) is taken as an
example.

2. Collapse of axisymmetric cavities: the ‘moving sink’ solution

In this section we generalize the results of Longuet-Higgins & Og̃uz (1995) (referred
to as LHO). In that paper the starting values for numerical time-stepping were
determined by writing down an exact solution for potential flow and identifying the
initial free surface with an instantaneous isobar of the solution. The initial flow was
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Figure 2. A moving-sink flow. Critical case when D = 0.8 and so C = 0.43: (a) profiles of the
bubble surface; (b) the axial velocity zt as a function of time.

due to a sink of strength S(t) at the moving point S, situated a distance a from the
fixed point O (see figure 1). Thus the initial velocity potential φ was given by

φ =
S

r
, (2.1)

where r(t) and θ(t) are polar coordinates relative to S. The velocity V of the sink is
chosen as that

V =
S

a2 . (2.2)

Hence in a frame of reference moving with the sink, the particle velocity at O is
initially zero. From Bernoulli’s equation one finds the contours of constant pressure
p = p0 to be given by

a4

r4 + 2
a2

r2 cos θ +D
a

r
= C, (2.3)

where

C = −2(p− p∞)
V 2 and D =

2Ṡ
aV 2 , (2.4)

p∞ being the pressure at infinity, assumed constant, and Ṡ = dS/dt. In the typical
case D = 1, the pressure contours (C = const.) are closed curves (in an axial plane)
surrounding the sink S; see LHO, figure 2b. The pressure gradient near the origin is
initially very high with a pressure maximum on the axis of symmetry, just below the
free surface.

On integrating forwards in time (t > 0) one finds typically a strong initial ac-
celeration, producing an inward jet along the axis. On working backwards in time
(or equivalently reversing the initial flow) one finds surprisingly that the jet moves
round to the opposite, or north, pole of the cavity (see LHO, figure 7), provided C
exceeds the critical value Ccrit = 0.4. When on the other hand C < Ccrit a jet is not
formed but a ‘bubble of air’ is pinched off. The difference in behaviour is seen clearly
by comparing the case C = 0.45 (LHO, figure 9a) with the case C = 0.35 (LHO,
figure 9b).
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Figure 3. A moving-sink flow. Critical case when D = 1.4 and so C = 0.31: (a) profiles of the
bubble surface; (b) the axial velocity zt as a function of time.
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Figure 4. Summary of results for the moving sink: (a) the critical value of C as a function of
D; (b) the exponent α as a function of D.

In the critical case C = 0.40, the self-similarity of the flow near the critical instant
and in the neighbourhood of the ‘north pole’ is shown in LHO, figures 10–13. We
have now carried out similar computations at other values of the parameter D in the
range 0.6 6 D 6 1.8. For each value of D there was a corresponding critical value
Ccrit of C separating jet formation from bubble pinch-off. Examples of the sequence
of bubble profiles near the critical time t = t1 are shown in figures 2a and 3a in the
typical cases D = 0.8 and D = 1.4, respectively. In figures 2b and 3b are shown the
velocity of a particle on the axis of symmetry, plotted against (t1−t) on a logarithmic
scale, and showing the power-law behaviour of zt. The corresponding exponent

α− 1 = 1− β (2.5)

is plotted in figure 4b, as a function of D. In contrast to the behaviour of Ccrit,
which varies smoothly with D (see figure 4a) we see that α remains almost constant
over the range 0.6 6 D 6 1.2, but then undergoes a transition to somewhat lower
values. The reason for this transition is not well understood but will be investigated
by comparison with other physical situations.
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Figure 5. Bubble collapse under gravity. Surface profiles when D = 0.01: (a) C = 0.10; (b)
C = 0.30; (c) C = 0.16; (d) the axial velocity zt in case (c).

3. Bubble collapse under gravity

In this next example we consider the collapse of an almost spherical bubble situated
at a depth H below a free surface where the ambient pressure is patm. The maximum
diameter of the bubble is assumed small compared to H. The initial shape of the
bubble is given in polar coordinates (r, 0) by

ζ/a = 1 + Ce−5(θ−π/2)2
, (3.1)

C being a dimensionless constant which controls the up–down asymmetry of the
bubble. The initial velocity is assumed to be zero.

If z is a vertical coordinate directed upwards from the centre of the bubble, then
the pressure at infinity in the plane z = 0 given by

p0 = patm + ρgH, (3.2)

where ρ is the water density and g is the gravity. Bernoulli’s equation may then be
written as

Dφ

Dt
− 1

2
(∇φ)2 +

p

ρ
+ gz =

p0

ρ
, (3.3)

φ being the velocity potential. Hence on the surface of the bubble where the pressure
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Figure 6. Bubble collapse under gravity. Surface profiles when D = 1.0: (a) C = 0.10; (b)
C = 0.30; (c) C = 0.30; (d) the axial velocity zt in case (c).

pB is assumed constant we have

Dφ

Dt
=

1
2

(∇φ)2 +
p0 − pB

ρ
+ gz. (3.4)

It is convenient to choose units so that ρ = 1 and (p0 − pB) = 1, and to write
equation (3.4) in the form

Dφ

Dt
=

1
2

(∇φ)2 + 1 +
ρgz

patm
D, (3.5)

where
D =

patm

p0 − pB
(3.6)

is a dimensionless parameter which controls the effect of gravity on the motion. Note
that when z = a = 50 cm the dimensionless combination (ρgz/patm) equals 0.0484.

Figures 5a, b show the collapse of the bubble when D = 0.01 and so the effect of
gravity is relatively small. In figure 5a, when C = 0.10, two inward jets are seen, one
upwards and one downwards. In figure 5b, when C = 0.3, two cavities are formed
instead. The critical value of C is 0.16; see figure 5c. From figure 5d we again see
self-similar behaviour with α = −0.4065.

On increasing D to 1.0 (see figure 6) so that gravity is relatively more important,
we see that when C = 0.10 (figure 6a) only one jet is formed, and when C = 0.30
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Figure 7. Bubble collapse under gravity (D = 2.0). The critical case when C = 0.16: (a)
Surface profiles; (b) zt as a function of time.

(figure 6b) there is only one cavity. In the critical case C = 0.16 (figure 6c). The
behaviour is self-similar as before, but with α = −0.396.

When D = 2.0 (figure 7) the asymmetry is even more pronounced. Figure 7a shows
the surface profile in the critical case C = 0.16, and figure 7b the behaviour of zt. The
value of α is very little changed, though it will be noticed that the limiting profile
has opened up markedly with the angle between the local asymptotes increased to
near 180◦.

4. Bubble collapse near a wall

Third we suppose the centre of the bubble to be at a finite distance h from a plane
wall. The initial configuration of the bubble surface is given by equation (3.2) as
before, but gravity is now neglected. The fluid is initially at rest. We have, then, the
dimensionless parameter

D = h/a, (4.1)
defining the relative distance of the bubble from the wall, and the constant C in equa-
tion (4.2) defining the bubble shape.

Figures 8a, b show the development of the profile when D = 1.1 and when C = 0.10
(jet formation) and when C = 0.30 (cavity formation), respectively. The critical value
C = 0.18 is shown in figure 8c. In this physical situation, critical behaviour was found
only at values of D slightly greater than 1 (D = 1.05 and D = 1.10), that is to say
when the bubble was quite close to the wall.

5. Discussion

From the previous examples it is clear that locally self-similar behaviour in the
critical flow dividing jet formation from the bubble pinch-off is not peculiar to the
moving-sink cavity, but occurs in other situations as well.

However, it is also clear that the exponent α defining the local asymptotic be-
haviour of the cavity in the critical case is not an absolute constant. We shall now
describe a theoretical model which suggests an appropriate value of α for one impor-
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Figure 8. Bubble collapse near a wall. Surface profiles when D = 1.1: (a) C = 0.10; (b)
C = 0.30; (c) C = 0.18; (d) the axial velocity zt in case (c).

tant limiting case. Consider the velocity potential

φ = ArνPν(cos θ), (5.1)

where (r, θ) are fixed polar coordinates, with the axis θ = 0 directed vertically
upwards and A is some function of the time t only. Pν denotes the Legendre function
of degree ν, non-integral in general. From Bernoulli’s equation we find

− p/ρ = ȦrνPν(µ) + 1
2A

2r2ν−2Φ(µ) + f(t), (5.2)

where we have set µ = cos θ and

Φ = (νPν)2 + (1− µ2)P ′2ν , (5.3)

with a prime denoting d/dµ. A dot denotes differentiation with respect to t.
From (5.1) and (5.2) we can write down the material time-derivative Dp/Dt, which
after some simplification becomes

− 1
ρ

Dp

Dt
= ÄrνPν + 2AȦr2ν−2Φ + ḟ +A3r3ν−4[ν(ν − 1)PνΦ + (1− µ2)P ′νΦ′]. (5.4)
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Figure 9. Surface profiles given by equation (5.12) when ν = 0.9: (a) C = 8.0; (b) C = 0.2.

Both expressions (5.2) and (5.4) are to vanish on the free surface. We shall discuss
the behaviour of these equations in the case when ν(ν−1) is small, and in particular
when ν is close to one.

Now from the expansion

Pν = 1 +
ν(ν + 1)

1.1

(
µ− 1

2

)
+
ν(ν − 1)

1.2
(ν + 1)(ν + 2)

1.2

(
µ− 1

2

)2

+ · · · , (5.5)

we see that ν is a factor of P ′ν(µ). Similarly it may be shown (see Appendix A)
that (ν − 1) is a factor of Φ′(µ). Hence when ν(ν − 1) is small, the coefficient of
r3ν−4 in equation (5.4) is in general small. Neglecting this term in comparison to the
first two terms in (5.4) we then have two expressions, (5.2) and (5.4) each with only
three terms, whose vanishing represents the same surface. Hence the coefficients of
corresponding terms are in proportion, that is to say

Ä

Ȧ
=

4AȦ
A2 =

ḟ

f
. (5.6)

Hence
Ȧ ∝ A4, (5.7)

and so

t ∝
∫

dA
A4 ∝

1
A3 . (5.8)

Thus
A = A0t

−1/3, f = f0t
−4/3, (5.9)

where A0 and f0 are constants and the velocity potential is given by

φ = A0t
−1/3rνPν(cos θ). (5.10)

The free surface, from (5.2) is approximately given by

− 1
3A0r

νPν + 1
2A

2
0t

2/3r2ν−2Φ + f0 = 0. (5.11)

Choosing units so that A0 = 2 and setting f0 = −( 2
3)C, where C is positive, we

obtain
rνPν − 3t2/3r2ν−2Φ + C = 0. (5.12)
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Table 1. Zeros of Pν(cos θ)

ν µ1 θ1

1.00 0.0000 90.00o

0.95 −0.0515 92.96o

0.90 −0.1063 96.10o

0.85 −0.1644 99.46o

0.80 −0.2258 103.05o

0.75 −0.2904 106.88o

1.5

1.4α

1.3
90º 100º 110º 120º

Figure 10. The exponent α = 2 − β plotted against the asymptotic angle θc for differential
physical situations: square plots, moving sink; ×, collapse under gravity; +, collapse near a wall.
The broken curve represents the theoretical exponent [2− 2

3 (2− ν)−1] plotted against the first
zero θ1 of Pν(cos θ).

This can also be written

Pν =
3t(2/3)Φ
r2−ν − C

rν
. (5.13)

Since ν is near unity, the free surface goes to infinity (r →∞) in a direction θ = θ1
where θ1 is the first zero of Pν(cos θ):

Pν(cos θ1) = 0. (5.14)

If ν < 1 the surface also crosses the line θ = θ1 at a finite value of r (see figure 9).
However, the distance of the surface from θ = θ1 increases without limit as r →∞.

Suppose that the constant C, which is at our disposal, is small compared to one.
Then provided that neither r nor Pν(cos θ) is small we have from equation (5.12)

r2−ν ∼ (3Φ/Pν)t(2/3). (5.15)
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Figure 11. Successive profiles of a shallow-water wave approaching a wall. (after Cooker &
Peregrine 1990).

In other words over a certain range of r and θ we have r ∝ tβ, where

β =
2

3(2− ν)
. (5.16)

In particular for a particle on the axis, where

θ = 0, µ = 1, Pν = 1, Φ = ν2, (5.17)

the factor (3Φ/Pν) equals 3ν2 simply. This power-law behaviour breaks down when
θ approaches θ1, and also for very small values of t, depending on the magnitude
of C.

Some zeros of Pν are given in table 1, from which it will be seen that ν is a
decreasing function of θ1. So from equation (5.16) we expect β to decrease and
α = 2 − β to increase with θ1. It is interesting to plot the experimental values of
α found in §§ 2–4, against the angle θc made by the ‘asymptotes’ with the vertical
axis. This is done in figure 10. In the same figure is shown the curve corresponding
to the first zero θ1 of Pν(cos θ), as derived from the series (5.5). The trend is similar
to that page of the plotted points.

On the other hand, as can be seen from figure 9b, at small values of C the theo-
retical surface profiles, though qualitatively similar to the experimental profiles, do
not closely match them. We must conclude that the simple potential function (5.1)
provides only a first approximation.

6. Critical jets in surface waves

We can give a similar interpretation to the two-dimensional jets in surface waves
found by Cooker & Peregrine (1991) which were mentioned in the introduction.
Figure 11, from Cooker & Peregrine (1990), shows a computed sequence of surface
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Figure 12. The surface acceleration ztt at x = 0, as a function of the time: (a) linear scale; (b)
logarithmic scale (t < t′).

profiles for a steep surface wave in shallow water meeting a vertical wall at x = 0.
They are at equal time increments ∆t = 0.01(h/g)1/2, where h is the undisturbed
depth of water.

From this data we may estimate the velocity zt and acceleration ztt of a surface
particle at the wall as a function of the time t. The acceleration is shown in figure 12a
from which it will be seen that there is a sharp maximum at about t1 = 1.91(h/g)1/2,
followed by a rapid fall off. This phase of the motion was called by Cooker & Peregrine
the ‘flip-through’. At slightly different values of the initial parameters, an air pocket
was trapped. Hence the flow in figure 11 can be considered as close to a critical case
separating air entrapment from jet formation. In contrast to the numerical cases
studied in §§ 2–4 we are here slightly on the jet side of the critical flow.

When plotted on a logarithmic scale against ln(t1−t) the values of the acceleration
to the left of the point of inflexion in figure 12a appear as in figure 12b. The plot is
very nearly a straight line, corresponding to the power-law

ztt/g ∝ (t1 − t)−1.22. (6.1)

Consider now the velocity potential

φ = Arν cos νθ, (6.2)

where r and θ are polar coordinates in two dimensions (θ = 0 vertically downwards)
and A is some function of the time t only. From Bernoulli’s equation we have for the
pressure p

− p/ρ = Ȧrν cos νθ + 1
2ν

2A2r2ν−2 + f(t), (6.3)
gravity being neglected. The time-derivative of p following a particle is found to be
given by

− 1
ρ

Dp

Dt
= 2ν2AȦr2ν−2 + [Ärν + ν3(ν − 1)A3r3ν−4] cos νθ + ḟ . (6.4)

Both p and Dp/Dt are to vanish on the free surface.
If ν is close but not equal to one, then the second term in the coefficient of cos νθ

in (6.4) becomes negligible compared to the first. As in §5 it follows that A = A0t
−1/3

and f = f0t
−4/3. On choosing A0 = 2 and f0 = −2

3C we find for the equation of the
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Figure 13. Profiles of the free surface given by equation (6.14) when ν = 0.95, C = 3.24 and
t = 0.7(−0.05)0.1.

free surface

rν cos νθ − 3ν2t2/3r2ν−2 + C = 0. (6.5)

This may be compared with equation (5.12), in which Pν is replaced by cos νθ and
Φ is replaced by ν2, a constant.

The ‘asymptotes’ of the free surface occur when r →∞ and θ → θ1, where

θ1 = π/2ν. (6.6)

We see that when C is small and θ is not near θ1, then r ∝ tβ as before, β being
given by equation (5.18).

As a confirmation of our approximation we note that in equation (6.4) the ratio
of the term neglected to that retained is

ν3(ν − 1)r2ν−4A3/Ä ∼ (ν − 1)r−2t4/3, (6.7)

which becomes increasingly small as t→ 0.
The forms of the free surface, though qualitatively similar to those in figure 9, are

not close to them when C is small. However, it may be worth remarking that if the
condition on f is relaxed we may have

f = −2
3Ct

σ and r = Rtβ, (6.8)

where σ and β are to be determined. Substitution in equation (6.3) gives the self-
similar form

Rν cos νθ − ν2R2ν−2 + C = 0 (6.9)

provided that the powers of t in (6.3) are all equal, that is

νβ − 4
3 = (2ν − 2)β − 2

3 = σ. (6.10)
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These relations are satisfied if

β =
2

3(2− ν)
, σ =

2(3ν − 4)
3(2− ν)

. (6.11)

When ν is close to one, then β is nearly 2
3 and the acceleration r̈ varies as t−4/3 as

before. Also σ ' − 2
3 . A typical sequence of surfaces is shown in figure 13, which may

be compared with figure 11.

7. Conclusions

In at least three different physical situations the formation of a critical jet in an
axisymmetric cavity has been found to be characterized by a power-law dependence
of the velocity and acceleration on the time t. The exponent (−α) in the power law
is not a constant, but seems to be related to the angle θc of inclination of the local
‘asymptotes’ to the direction of the axis.

A simple model of the local velocity potential as a spherical harmonic of degree
ν leads to the conclusion that when ν is close to one then α should be nearly 4

3 .
Moreover as θc increases, ν diminishes and α should increase. These expectations are
borne out by the numerical calculations.

On the other hand the free surface profiles, though in qualitative agreement with
the numerically calculated profiles, do not match them accurately, so that equa-
tion (5.1) can be only a first approximation.

An analogous situation exists for steep gravity waves meeting a vertical wall. The
strong upwards jet, or ‘flip-through’ described by Cooker & Peregrine can be inter-
preted as a critical microjet in two dimensions. Again it is found that the acceleration
of a particle at the wall has a power-law dependence on the time. This likewise is ex-
plained by a simple analytic model (equation (6.1)), but again a single term does not
accurately match the free surface. There is clearly more to be done on this problem.
We are indebted to Dr M. J. Cooker for supplying the numerical values of the acceleration used
in §6. The physical example in §4 (bubble collapse near a wall) was suggested by Professor
J. R. Blake. This work has been supported by the Office of Naval Research under Contract
N00014-91-J-1582 and by the US National Science Foundation under Grant CTS 9318724.

Appendix A. Proof that (1− ν) divides dΦ/dµ

From the definition of Φ in equation (5.3) we have

Φ′ = 2P ′ν [ν2Pν − µP ′ν + (1− µ2)P ′′ν ]. (A 1)

The second derivative P ′′ν can be eliminated by using the differential equation for
Pν(µ) (Whittaker & Watson 1927, ch. 15) to give

Φ′ = 2P ′ν [µP ′ν − νPν ]. (A 2)

But from the expansion (5.5) we have

Pν = 1 + 1
2ν(ν + 1)(µ− 1) +R, (A 3)

where R is divisible by (ν − 1). Substitution from (A 3) into (A 2) gives

(µP ′ν − νPν) = (µR′ − νR)− 1
2(ν − 1)[(ν + 1)µ− (2 + ν)], (A 4)

which is divisible by (ν − 1). Hence Φ′ also is divisible by (ν − 1).
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